Wall-Temperature Limits for Sn in ARIES-RS/AT and Modeling for NSTX Li Module*

T.D. Rognlien and M.E. Rensink

Lawrence Livermore National Lab

ALPS Electronic Meeting May 4, 2001

^{*} Work performed by University of California Lawrence Livermore National Laboratory for USDoE under contract No. W-7405-ENG-48.

A systematic set of steps predicts the core impurity level from liquid walls

An acceptable core Sn level is obtained for ARIES case:

Summary of core-impurity-based surface temperature limits for tokamaks

No auxiliary impurity removal scheme used

Red numbers imply same wall/divertor material

Hydrogen recycling	Lithium ℃	Flibe (F)	Sn ₈₀ Li ₂₀ °C	Sn °C
$R_{h} = 0.25$	380	480	590	> 850
$R_{h} = 0.99$	> 300	400 (solid)	> 500	830

Effective wall temperatures are quoted as determined by the total acceptable impurity flux; e.g., for Sn, the inlet is 550 C and the outlet is 900 C.

Initial NSTX double-null configuration (EFIT case k22_d035_li055)

VERTICAL POSITION (m)

RADIAL POSITION (m)

Midplane temperatures for two locations of R=0.9 low recycling plate; Icore=100 A

Edge plasma varies with location of R=0.9 divertor

Plans for edge-plasma modeling

- Analyze impact of divertor shape on heat load and helium pumping efficiency
- Evaluate the wall temperature limits for galium
- Continue modeling for NSTX module and possibly other devices
- Assist with CDX-U modeling bottom limiter